Matrix metalloproteinase-9 and myeloperoxidase expression: quantitative analysis by antigen immunohistochemistry in a model of transient focal cerebral ischemia.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Expression of matrix metalloproteinases (MMPs), proteolytic enzymes that degrade extracellular proteins, is altered after ischemia/reperfusion injury and may contribute to blood-brain barrier (BBB) breakdown. Neutrophils, a source of reactive oxygen species and MMP-9, infiltrate damaged tissue 6 to 24 hours after ischemia and have also been implicated in delayed secondary tissue damage. Here we examined the spatial-temporal relation between MMP-9 expression and neutrophil infiltration after stroke. METHODS Knockout mice containing 50% manganese superoxide dismutase activity (SOD2-KOs), which are more susceptible to ischemic damage than wild-type (WT) littermates, underwent quantitative antigen (MMP-9, myeloperoxidase) immunohistochemistry (24 and 72 hours) analysis and protein expression by Western blotting (6, 12, 24, 48, and 72 hours) after transient focal cerebral ischemia. BBB breakdown was determined by Evans blue extravasation. RESULTS There was a clear spatial relation between MMP-9 expression and Evans blue extravasation. MMP-9-positive cell and vessel counts for SOD2-KOs (72 hours) were significantly different from SOD2-KO (24 hours, P=0.004), WT (24 hours, P=0.01), and WT (72 hours, P=0.007) mice. In contrast, MMP-9-positive neutrophil counts were comparatively low and did not differ by time or animal type. MMP-9 expression was biphasic in SOD2-KOs but not in WT littermates, with a significant increase observed 6 to 12 hours after ischemic insult and again at 48 to 72 hours. SOD2-KOs showed increased MMP-9 expression compared with WT littermates at all time points studied (P< or =0.05). CONCLUSIONS In this model, neutrophils are not the primary source of MMP-9 protein and thus are unlikely the key contributor to BBB breakdown observed in SOD2-KOs.
منابع مشابه
Research Paper: Optimization of Transient Focal Cerebral Ischemia Model by Middle Cerebral Artery Occlusion
Introduction: Cerebral ischemia is one of the most common causes of death in human populations in the industrial communities. The need for animal models is inevitable to study the pathophysiology and treatment of cerebral ischemia in human. The current study aimed at evaluating the strengths and weaknesses of different techniques used to create ischemia in previous studies and optimizing the tr...
متن کاملQuantitative evaluation of Blood Brain Barrier permeability in transient focal cerebral ischemia in the rat
Introduction: Development of brain edema following focal cerebral ischemia exacerbates primary ischemic injury. Blood brain barrier (BBB) opening is an important part of edema named as vasogenic brain edema. In this study, quantitative alterations of BBB permeability is experimentally evaluated using transient focal cerebral ischemia in the rat. Methods: Two groups of male rats (ischemic and sh...
متن کاملEffect of pentoxifylline on brain edema in a rat model of transient focal cerebral ischemia
Pervious studies have shown that pentoxifylline (PTX) has beneficial effects in reduction of stroke and brain trauma injuries in experimental animals. However, there is very little and controversial information about the effect of PTX on brain edema in cerebral ischemia. Therefore, the aim of this study was to determine the effects of different doses of PTX on brain edema and neurological m...
متن کاملL-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملPre-Ischemic Treatment of Pentoxifylline Reduces Infarct Volumes in Transient Focal Cerebral Ischemia in the Rat
Background: Pentoxifylline (PTX) is used in human for intermittent claudication and cerebral vascular disorders including cerebrovascular dementia. It also inhibits the synthesis of tumor necrosis factor-α (TNF-α), which is believed to be neurotoxic in animal models of cerebral ischemia. The objective of this study was to examine the role of PTX on ischemia/reperfusion injures in rat model of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 35 5 شماره
صفحات -
تاریخ انتشار 2004